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Abstract. The one-sided two-level crossing reduction problem is an
important problem in hierarchical graph drawing. Because of its NP-
hardness there are many heuristics, such as the well-known barycenter
and median heuristics. We consider the constrained one-sided two-level
crossing reduction problem, where the relative position of certain vertex
pairs on the second level is fixed. Based on the barycenter heuristic, we
present a new algorithm that runs in quadratic time and generates fewer
crossings than existing simple extensions. It is significantly faster than
an advanced algorithm by Schreiber [12] and Finnocchi [1, 2, 6], while it
compares well in terms of crossing number. It is also easy to implement.

1 Introduction

The most common algorithm for drawing directed acyclic graphs is the algo-
rithm of Sugiyama, Tagawa, and Toda [13]. The vertex set is partitioned into
parallel horizontal levels such that all edges point downwards. For every inter-
section between an edge and a level line, a dummy vertex is introduced that may
later become an edge bend. In a second phase, a permutation of the vertices on
each level is computed that minimizes the number of edge crossings. Finally,
horizontal coordinates are computed, retaining the vertex order on each level.

A small number of crossings is very important for a drawing to be understand-
able. Thus, the crossing reduction problem is well studied. The minimization of
crossings is NP-hard [4, 8], and many heuristics exist for crossing reduction.
Most of them reduce the problem to a sequence of one-sided two-level crossing
reduction problems. Starting with an arbitrary permutation of the first level, a
permutation of the second level is computed that induces a small number of edge
crossings between the first two levels. Then the permutation of the second level
is fixed and the third level is reordered. This is repeated for all levels, alternately
top down and bottom up, until some termination criterion is met.

A simple and efficient heuristic for the one-sided two-level crossing reduction
problem is the barycenter heuristic. For every vertex v on the second level, its
barycenter value b(v) is defined as the arithmetic mean of the relative positions
of its neighbors N(v) on the first level b(v) = 1

|N(v)|
∑

v∈N(v) pos(v). The vertices
on the second level are then sorted by their barycenter value. In practice this
strategy gives good results, while keeping the running time low. An alternative



(a) The constraint is violated (b) The constraint is satisfied

Fig. 1. The constrained crossing reduction problem

is the median heuristic, which works similar but uses median values instead of
the barycenter. The median heuristic can be proven [3, 5] to miss the minimum
number of crossings by a factor of at most three. However, in experimental results
[9, 10] it is outperformed by the barycenter heuristic.

As a variant of the crossing reduction problem we consider the constrained
one-sided two-level crossing reduction problem. In addition to the permutation
of the first level, some pairs of vertices on the second level have a fixed relative
position. Figure 1 shows a two-level graph with one constraint c = (w, v), visu-
alized by the bold arrow. The constraint means that its source vertex w must
be positioned on the left of its target vertex v. In Fig. 1(a), the constraint is
violated, and in Fig. 1(b) it is satisfied. Obviously, constraints may increase the
number of crossings, in this case from two to five.

Formally, an instance of the constrained one-sided two-level crossing reduc-
tion problem consists of a two-level graph G = (V1, V2, E), E ⊆ V1 × V2 with a
fixed permutation of the first level V1 and a set C ⊆ V2 × V2 of constraints. It is
our objective to find a permutation of the vertices on the second level V2 with
few edge crossings and all constraints satisfied. Clearly, this problem is NP-hard
as well. A solution only exists if the constraint graph GC = (V2, C) is acyclic.

While the constrained crossing reduction problem has many direct practical
applications, it also appears as a subproblem in other graph drawing problems.
An example is the application of the Sugiyama algorithm to graphs with vertices
of arbitrary size [12] or to clustered graphs [7]. When vertices or clusters span
multiple levels, constraints can be used to prevent overlap. Another application
is preserving the mental map when visualizing a sequence of related graphs.

This paper is organized as follows: We survey existing approaches for the
constrained two-level crossing reduction problem in the next section. In Sect. 3
we present our heuristic and prove its correctness in Sect. 4. Section 5 gives
experimental results that compare our heuristic to the existing algorithms. We
close with a short summary in Sect. 6.

2 Previous Work

The constrained crossing reduction problem has been considered several times.
Sander [11] proposes a simple strategy to extend iterative two-level crossing
reduction algorithms to handle constraints. Starting with an arbitrary admissible
vertex permutation, updates are only executed if they do not violate a constraint.
Together with the barycenter heuristic a modified sorting algorithm is used: The



positions of two vertices are only swapped, if no constraint is violated. Waddle
[14] presents a similar algorithm. After the calculation of the barycenter values
it is checked for each constraint whether its target has a lower barycenter value
than its source. In that case the constraint would be violated after sorting the
vertices by the barycenter values. To avoid this, the barycenter value of the
source vertex is changed to the barycenter value of the target vertex plus some
small value. The result of both heuristics is a vertex permutation that satisfies
all constraints. However, the extensions are rather restrictive and often prevent
the algorithm from finding a good permutation. Accordingly, the results are
significantly worse than in graphs without constraints.

Schreiber [12] and Finnocchi [1, 2, 6] have independently presented an ad-
vanced algorithm that considers constraints and crossing minimization simulta-
neously. Their main idea is to reduce the constrained crossing reduction problem
to the weighted feedback arc set problem, which is also NP-hard [3]. First the
so-called penalty graph is constructed. Its vertices are the vertices of the second
level. For each pair (u, v) of vertices the number of crossings in the two relative
orders of u and v is compared. For this, only edges incident to u or v are consid-
ered. If the number of crossings cuv in the relative order . . . , u, . . . , v, . . . is less
than the number of crossings cvu in the reverse order . . . , v, . . . , u, . . . , then an
edge e = (u, v) with weight w(e) = cvu − cuv is inserted. Constraints are added
as edges with infinite (or very large) weight. Figure 2 shows the penalty graph
of the two-level graph in Fig. 1.

Then a heuristic for the weighted feedback arc set problem is applied to the
penalty graph. It is important that the used heuristic guarantees that the edges
with infinite weight are not reversed, or constraints may be violated. Finally,
the vertices of the now acyclic penalty graph are sorted topologically, and the
resulting permutation defines the order of the second level. If no edges had to
be reversed, the number of crossings meets the obvious lower bound cmin =∑

u,v∈V min{cuv, cvu}. Each reversed edge e increments the number of crossings
by its weight. This implies that an optimal solution of the weighted feedback arc
set problem is also optimal for the constrained crossing reduction problem.

Comparing the approaches of Sander [11] and Waddle [14] with those of
Schreiber [12] and Finnocchi [1, 2, 6] shows a direct trade-off between quality
and execution time. Schreiber presents detailed experimental results which show
that the penalty graph approach generates significantly less crossings than the
barycenter heuristic extensions. This is especially evident, if there are many
constraints. The running times, however, are considerably higher. This is not
very surprising due to the O(|V2|4 + |E|2) time complexity.

Fig. 2. The penalty graph of Fig. 1



3 A modified barycenter heuristic

The goal of our research is to build an algorithm that is as fast as the existing
barycenter extensions while delivering a quality comparable to the penalty graph
approach. To achieve this we use a new extension of the barycenter heuristic.
We could have used the median heuristic as well, but we did not, because it is
experimentally worse and in our algorithm median values are more difficult to
handle.

We start by computing the barycenter values of all vertices. As long as the
source of each constraint has a lower barycenter value than the target, all con-
straints are satisfied automatically. In the reverse case the permutation has to
be corrected. In this context, we call a constraint c = (s, t) satisfied if b(s) < b(t)
and violated otherwise.

Our algorithm is based on a simple assumption: If a constraint is violated
as in Fig. 3(a), the greater barycenter value of the source vertex indicates more
edges “to the right” than “to the left”, |E3| > |E1|. The inverse is true for
the target vertex, |E4| < |E2|. In this situation we assume that in the corrected
permutation no other vertices should be positioned in between. This seems plau-
sible, because between s and t larger subsets of adjacent edges have to be crossed
than outside. Using median values it can be proven that for a vertex with only
one incident edge there is always an optimal position beyond any violated con-
straint. This is not generally true, however, for vertices of higher degree or for
the barycenter heuristic as Fig. 3(b) shows. The optimal position for vertex v
is in the middle, where its edges generate 6 crossings as opposed to 8 crossings
at the other two positions. Nevertheless, adopting the assumption is justified by
good experimental results presented in Sect. 5.

Our heuristic, shown in Algorithm 1, partitions the vertex set V2 into totally
ordered vertex lists. Initially there is one singleton list L(v) = 〈v〉 per vertex v.
In the course of the algorithm these lists are pairwise concatenated into longer
lists according to violated constraints. Concatenated lists are represented by new
dummy vertices and associated barycenter values. As long as there are violated
constraints, each violated constraint c = (s, t) is removed one by one and the
lists containing s and t are concatenated in the required order. They are then
treated as a cluster of vertices. This guarantees that the constraint is satisfied

(a) Vertices with a single edge should
not be positioned between the vertices
of a violated constraint (b(s) > b(t)).

(b) In general, the optimal position
for a vertex may be between the ver-
tices of a violated constraint.

Fig. 3. The Basic Assumption of Our Algorithm



Algorithm 1: CONSTRAINED-CROSSING-REDUCTION

Input: A two-level graph G = (V1, V2, E) and acyclic constraints C ⊆ V2 × V2

Output: A permutation of V2

begin
1 foreach v ∈ V2 do
2 b(v)←

P
u∈N(v) pos(u)/ deg(v) //barycenter of v

3 L(v)← 〈v〉 //new singleton list

4 V ← { s, t | (s, t) ∈ C } //constrained vertices
5 V ′ ← V2 − V //unconstrained vertices

6 while (s, t)← FIND-VIOLATED-CONSTRAINT(V, C) 6= ⊥ do
7 create new vertex vc

8 deg(vc)← deg(s) + deg(t) //update barycenter value
9 b(vc)←

�
b(s) · deg(s) + b(t) · deg(t)

�
/ deg(vc)

10 L(vc)← L(s) ◦ L(t) //concatenate vertex lists

11 forall c ∈ C do
12 if c is incident to s or t then
13 make c incident to vc instead of s or t

14 C ← C − {(vc, vc)} //remove self loops
15 V ← V − {s, t}
16 if vc has incident constraints then V ← V ∪ {vc}
17 else V ′ ← V ′ ∪ {vc}

18 V ′′ ← V ∪ V ′

19 sort V ′′ by b()

20 L← 〈〉 //concatenate vertex lists
21 foreach v ∈ V ′′ do
22 L← L ◦ L(v)

23 return L
end

but prevents other vertices from being placed between s and t. Following our
assumption, this does no harm. A new vertex vc replaces s and t to represent the
concatenated list L(vc) = L(s) ◦L(t). The barycenter value of vc is computed as
if all edges that are incident to a vertex in L(vc) were incident to vc. This can be
done in constant time as demonstrated in lines 8 and 9 of the algorithm. Note
that this is not doable for the median value.

When no violated constraints are left, the remaining vertices and vertex lists
are sorted by their barycenter value as in the standard barycenter heuristic. The
concatenation of all vertex lists results in a vertex permutation that satisfies all
constraints. We claim that it has few crossings as well.

For the correctness of the algorithm it is important to consider the violated
constraints in the right order. In Fig. 4 the constraints are considered in the



(a) Before the merge all constraints
are satisfiable by the given order.
Let c be violated.

(b) After merging s and t the gen-
erated constraint cycle makes it im-
possible to satisfy all constraints.

(c) Starting with c′ leads to a correct result.

Fig. 4. Considering constraints in the wrong order

wrong order and c is processed first. This leads to a cycle in the resulting con-
straint graph which makes it impossible to satisfy all remaining constraints,
although the original constraint graph was acyclic. If c is violated, at least one
of the other constraints is also violated. Processing this constraint first leads to
a correct result.

Thus, we must avoid generating constraint cycles. We use a modified topo-
logical sorting algorithm on the constraint graph. The constraints are considered
sorted lexicographically by the topsort numbers of the target and source vertices
in ascending and descending order, respectively. Using Algorithm 2 this traver-
sal can be implemented in O(|C|) time. The vertices are traversed in topological
order. The incoming constraints of a vertex t are stored in an ordered list I(t)
that is sorted by the reverse traversal order of the source vertices. If a traversed
vertex has incoming violated constraints, the topological sorting is cancelled and
the first of them is returned. Note that the processing of a violated constraint
can lead to newly violated constraints. Thus, the traversal must be restarted for
every violated constraint.

4 Theoretical Analysis

In this section we analyse the correctness and running time of our algorithm.
For the correctness we have to show that the vertex permutation computed by
our algorithm satisfies all constraints. We start by analyzing Algorithm 2:

Lemma 1. Let c = (s, t) be a constraint returned by Algorithm 2. Then merging
of s and t does not introduce a constraint cycle of two or more constraints.

Proof. Assume that merging of s and t generates a cycle of at least two con-
straints. Because there was no cycle before, the cycle corresponds to a path p in
GC from s to t with a length of at least two. Because of the specified constraint
traversal order, any constraint in p has already been considered, and thus is sat-
isfied. This implies that b(t) > b(s), and therefore contradicts the assumption.

ut



Algorithm 2: FIND-VIOLATED-CONSTRAINT

Input: An acyclic constraint graph GC = (V, C) without isolated vertices

Output: A violated constraint c, or ⊥ if none exists

begin
1 S ← ∅ //active vertices

2 foreach v ∈ V do
3 I(v)← 〈〉 //empty list of incoming constraints
4 if indeg(v) = 0 then
5 S ← S ∪ {v} //vertices without incoming constraints

6 while S 6= ∅ do
7 choose v ∈ S
8 S ← S − {v}
9 foreach c = (s, v) ∈ I(v) in list order do

10 if b(s) ≥ b(v) then
11 return c

12 foreach outgoing constraint c = (v, t) do
13 I(t)← 〈c〉 ◦ I(t)
14 if |I(t)| = indeg(t) then
15 S ← S ∪ {t}

16 return ⊥
end

Theorem 1. The permutation computed by Algorithm 1 satisfies all constraints.

Proof. Algorithm 1 maintains the invariant that the constraint graph is acyclic.
Because of Lemma 1 no nontrivial cycles are introduced, and self loops are
explicitly removed in line 14.

Next we analyse whether the removed self loop constraints are satisfied by
the algorithm. Any such self loop c′ has been generated by the lines 11–13 from
a constraint between s and t. Because of the constraint c = (s, t), the invariant
implies that c′ was not directed from t to s. Therefore, c′ = (s, t) is explicitly
satisfied by the list concatenation in line 10.

Each remaining constraint has not been returned by Algorithm 2. Thus, the
barycenter value of its source vertex is less than that of its target vertex. Then
the constraint is satisfied by line 19. ut

The rest of this section analyses the running time of our algorithm. Again,
we start with the analysis of Algorithm 2.

Lemma 2. Algorithm 2 runs in O(|C|) time.

Proof. The initialization of the algorithm in lines 1–5 runs in O(|V |) time. The
while-loop is executed at most |V | times. The nested foreach-loops are both



executed at most once per constraint. The sum of these time bounds is O(|V |+
|C|). Because the constraint graph does not contain isolated vertices, the overall
running time of the algorithm is bounded by O(|C|). ut
Theorem 2. Algorithm 1 runs in O(|V2| log |V2|+ |E|+ |C|2) time.

Proof. The initialization of the algorithm in lines 1–3 considers every vertex and
edge once and therefore needs O(|V2|+ |E|) time. The while-loop is executed at
most once per constraint. It has an overall running time of O(|C|2) because the
running time of one loop execution is bounded by the O(|C|) running time of
Algorithm 2. Finally, the sorting in line 19 needs O(|V2| log |V2|) time. The sum
of these time bounds is O(|V2| log |V2|+ |E|+ |C|2). All other statements of the
algorithm do not increase the running time. ut

5 Experimental Analysis

To analyse the performance of our heuristic, we have implemented both our
algorithm and the penalty graph approach in Java. We have tested the im-
plementations using a total number of 37,500 random graphs: 150 graphs for
every combination of the following parameters: |V2| ∈ {50, 100, 150, 200, 250},
|E|/|V2| ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, |C|/|V2| ∈ {0, 0.25, 0.5, 0.75, 1.0}.

Figure 5 displays a direct comparison. The diagrams show, how the results
vary, when one of the three parameters is changed. Because the number of cross-
ings grows very fast in the number of edges, we do not compare absolute crossing
numbers, but the number of crossings divided by the number of crossings before
the crossing reduction. As expected, the penalty graph approach gives strictly
better results than our heuristic. But the graphs also show that the difference is
very small. For a more detailed comparison, we have also analyzed the quotient
of the crossing numbers in Fig. 6. These graphs show that our algorithm is never
more than 3% worse than the penalty graph approach. Mostly the difference is
below 1%. Only for very sparse graphs there is a significant difference.

This is a very encouraging result, considering the running time difference
of both algorithms: Figure 7 compares the running time of the algorithms. As
expected, our algorithm is significantly faster than the penalty graph approach.
Because of the high running time of the penalty graph approach we have not
compared the algorithms on larger graphs, but our algorithm is certainly capable
of processing larger graphs. For example, graphs with |V2| = 1000, |E| = 2000,
and |C| = 500 can be processed in less than a second, although our implemen-
tation is not highly optimized.

6 Summary

We have presented a new fast and simple heuristic for the constrained one-
sided two-level crossing reduction problem. In practice, the algorithm delivers
nearly the same quality as existing more complex algorithms, while its running
time is significantly better. For further improvement, a traversal of the violated
constraints is desired that runs faster than O(|C|2).
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Fig. 5. The ratio of crossings before and after crossing reduction. Lesser values are
better
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